AAO Foundation Award Final Repor	rt
---	----

Co-Investigator Henry Fields Secondary Investigators Michael Matlof Memorial Teaching Fellowship Award Project Title Microglia activation by tooth movement and the effect of minocyclin Project Year 2014 Institution The Ohio State University College of Dentistry Division of Orthodontics Summary/Abstract (250 word maximum) Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis).		T
Secondary Investigators Award Type Michael Matlof Memorial Teaching Fellowship Award Project Title Microglia activation by tooth movement and the effect of minocyclin Project Year 2014 Institution The Ohio State University College of Dentistry Division of Orthodontics Summary/Abstract (250 word maximum) Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoractivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (m=5, for cach) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant by attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline. Were the original, specific aims of the proposal realized? Yes Were the results	Principal Investigator	Toru Deguchi
Award TypeMichael Matlof Memorial Teaching Fellowship AwardProject TitleMicroglia activation by tooth movement and the effect of minocyclinProject Year2014InstitutionThe Ohio State University College of Dentistry Division of OrthodonticsSummary/Abstract (250 word maximum)Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrilary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1, 3, 5, 7, 14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant increase in the OX-42 and GFAP-ir in response to tooth movement in the MDH. Furthermore, systemic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline. YesWere the original, sp	Co-Investigator	Henry Fields
Project TitleMicroglia activation by tooth movement and the effect of minocyclinProject Year2014InstitutionThe Ohio State University College of Dentistry Division of OrthodonticsSummary/Abstract (250 word maximum)Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the mcdullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant increase in the OX-42 and GFAP-ir in response to tooth movement in the MDH. Furthermore, systemic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nocicceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline. YesWere the original, specific aims of the proposal realized?YesYesIn su	Secondary Investigators	
Project Year2014InstitutionThe Ohio State University College of Dentistry Division of OrthodonticsSummary/Abstract (250 word maximum)Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significantly attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline. YesWere the original, specific aims of the proposal realized?In submission. Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki Ichikawa, Takashi YamashiroHave the results of thisAt the 73 rd Annual Meeting of the Japan	Award Type	Michael Matlof Memorial Teaching Fellowship Award
InstitutionThe Ohio State University College of Dentistry Division of OrthodonticsSummary/Abstract (250 word maximum)Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ri) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 13,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed with confocal fluorescence microscope and WinRoof software program. Results: There dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant increase in the OX-42 and GFAP-ir in response to tooth movement in the MDH. Furthermore, systemic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline.Were the original, specific aims of the proposal realized?In submission. Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields	Project Title	Microglia activation by tooth movement and the effect of minocyclin
Summary/Abstract (250 word maximum)Introduction: Orthodontic tooth movement causes pain to a patient. Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant increase in the OX-42 and GFAP-ir in response to tooth movement in the MDH. Furthermore, systemic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline.Were the original, specific aims of the proposal realized?In submission. Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki Ichikawa, Takashi YamashiroHave the results of thisAt t	Project Year	2014
(250 word maximum)Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant increase in the OX-42 and GFAP-ir in response to tooth movement in the MDH. Furthermore, systemic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline.YesWere the original, specific aims of the proposal realized?YesYesWere the results published? If not, are there plans to publish?In submission. Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki Ichikawa, Takashi YamashiroHave	Institution	
specific aims of the proposal realized?In submission.Were the results published? If not, are there plans to publish?In submission.If not, why not?Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki Ichikawa, Takashi YamashiroHave the results of thisAt the 73 rd Annual Meeting of the Japanese Orthodontic Society held	(250 word maximum)	Glial cells are non-neuronal cells in the central nervous system (CNS), and implicated in various types of pain. The present study assessed glial activation responses following experimental tooth movement using immunocytochemical detection of OX-42 and glial fibrillary acidic protein (GFAP) immunoreactivity (ir) to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods: Fifty-five Sprague Dawley rats with and without administration of minocycline after 1,3,5,7,14 days (n=5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX-42) and astrocyte (GFAP) were performed at the medullary dorsal horn (MDH; trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with confocal fluorescence microscope and WinRoof software program. Results: There was a significant increase in the OX-42 and GFAP-ir in response to tooth movement in the MDH. Furthermore, systemic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in MDH that was induced by experimental tooth movement. Conclusion: These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systemic application of minocycline.
Were the resultsIn submission.published? If not, are there plans to publish?Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki Ichikawa, Takashi YamashiroHave the results of thisAt the 73 rd Annual Meeting of the Japanese Orthodontic Society held	specific aims of the	Yes
published? If not, are there plans to publish?Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki Ichikawa, Takashi YamashiroHave the results of thisAt the 73 rd Annual Meeting of the Japanese Orthodontic Society held	1 1	
Have the results of this At the 73 rd Annual Meeting of the Japanese Orthodontic Society held	published? If not, are there plans to publish?	Title: The effect of minocycline on induced glial activation by experimental tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto,
		At the 73 rd Annual Meeting of the Japanese Orthodontic Society held

presented? If so, when	Title: Effect of minocyclin on glial activation and pain control during
and where? If not, are	tooth movement. Toru Deguchi, Rie Adachi, Hiroshi Kamioka, Kim
there plans to do so? If	Do-Gyoon, Henry Fields, Teruko Takano-Yamamoto, Hiroyuki
not, why not?	Ichikawa, Takashi Yamashiro
To what extent have you used, or how do you intend to use, AAOF funding to further your career?	I would like to use the AAOF fund for further grant application for NIH grant.